

STANDARD BAR SPLICER ASSEMBLY

	Minimo	um Lap Leng	ths	
Bar size to be spliced	Table 1	Table 2	Table 3	Table 4
3, 4	1'-5''	1'-11''	2'-1"	2'-4"
5	1'-9''	2'-5"	2'-7"	2'-11''
6	2'-1"	2'-11''	3'-1"	3'-6"
7	2'-9"	3'-10''	4'-2"	4'-8''
8	3'-8''	5′-1′′	5′-5′′	6'-2''
9	4'-7"	6′-5′′	6'-10''	7'-9''

Table 1: Black bar, 0.8 Class C

Table 2: Black bar, Top bar lap, 0.8 Class C

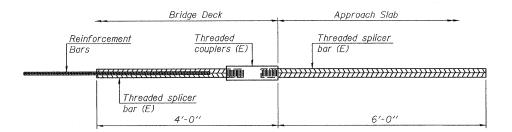
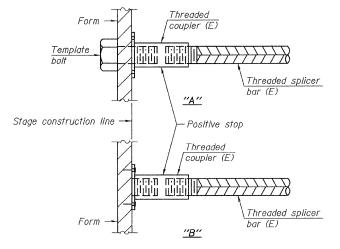

Table 3: Epoxy bar, 0.8 Class C

Table 4: Epoxy bar, Top bar lap, 0.8 Class C

Threaded splicer bar length = min. lap length + 1_2^{l} " + thread length

* Epoxy not required on Bar Splicer Assembly components used in conjunction with black bars.

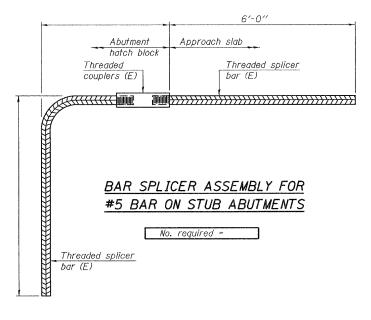
l ocation	Bar	No. assemblies	Table for minimum
Location	size	required	lap length
W. Abutment (0107)	#6	8	3
E. Abutment (0107)	#6	8	3
W. Abutment (0108)	#6	8	3
E. Abutment (0108)	#6	8	3

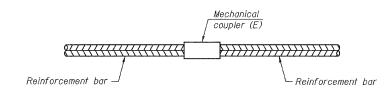


BAR SPLICER ASSEMBLY FOR #5 BAR ON INTEGRAL OR SEMI-INTEGRAL ABUTMENTS

No. required =

	.]	
DESIGNED	IJL	APRIL 27, 2010
CHECKED	ATH	EXAMINED & Carl Prayey
DRAWN	baliva	PASSED Ralph E. anderson
CHECKED	IJL ATH	engineer of Bridges and Structures
BSD-1	i	11-1-09


STATE OF ILLINOIS DEPARTMENT OF TRANSPORTATION



INSTALLATION AND SETTING METHODS

"A": Set bar splicer assembly by means of a template bolt.
"B": Set bar splicer assembly by nailing to wood forms or cementing to steel forms.

(E): Indicates epoxy coating.

STANDARD MECHANICAL SPLICER

Location	Bar size	No. assemblies required

NOTES

Splicer bars shall be deformed with threaded ends and have a minimum 60 ksi yield strenath.

All reinforcement shall be lapped and tied to the splicer bars.

Bar splicer assemblies shall be epoxy coated according to the requirements for reinforcement bars. See Section 508 of the Standard Specifications.

See special provision for Mechanical Splicers.

See approved list of bar splicer assemblies and mechanical splicers for alternatives.

BAR SPLICER ASSEMBLY AND MECHANICAL SPLICER DETAILS FAI 80 OVER MINERAL CREEK. SN 037-0107 (EB) & 0108 (WB)

	SHEET NO.5	F.A.I. RTE.	SECTION		COUNTY	TOTAL SHEETS	SHEET NO.
		80	(37-2B-2)M		HENRY	11	10
	5 SHEETS				CONTRACT	NO. 64	IG23
			ILLINOIS	FED. A	ID PROJECT		

0370107.dgn 4/27/2010 1: 42: 44 PM